A flat-gain LNA based on LTCC technology at UHF (300-500 MHz)

Rafael Rocha Heymann, Juan P. Pantoja, Leonardo L. Bravo Roger, Luciano Prado de Oliveira, Edson C Reis, João R. Moreira Neto, Hugo E. Hernandez Figueroa


This paper presents a design of a low noise amplifiers (LNA) with all passives elements embedded on low temperature co-fired ceramic (LTCC) substrate. Simulation results reveal that the proposed LNA has a flat-gain of 23.34 dB from 300 to 500 MHz, a noise figure below 0.73 dB and a compact size of 16.7 mm x 8.5 mm.


Embedded Passives, LNA, LTCC, UHF

Full Text:



R. Liu, D. Schreurs, W. De Raedt, F. Vanaverbeke, and R. Mertens, "A low cost compact LTCC-based GaN power amplifier module,`` in Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC), 2011, pp. 1–4.

J. J. Lee, D. Y. Jung, K. C. Eun, I. Y. Oh, and C. S. Park, "A low power CMOS single-chip receiver and system-on-package for 60GHz mobile applications,`` in IEEE International Symposium on Radio-Frequency Integration Technology, 2009. RFIT 2009, 2009, pp. 24–27.

B. C. Ham, D. H. Kim, J. M. Yook, J. I. Ryu, J. C. Kim, J. C. Park, Y. C. Park, and D. Kim, "A GPS/BT/WiFi triple-mode RF FEM using Si- and LTCC-based embedded technologies,`` in IEEE Microwave Symposium Digest (MTT), 2012, pp. 1–3.

"IEEE Standard Letter Designations for Radar-Frequency Bands,`` IEEE Std 521-2002 Revis. IEEE Std 521-1984, pp. 0_1–3, 2003.

Radio Communications in the Digital Age: VHF/UHF technology. Volume two. Harris, 2000.

P. H. Young, Técnicas de Comunicação Eletrônica, Edição: 5. Pearson, 2006.

R. Gilmore and L. Besser, Practical RF Circuit Design for Modern Wireless Systems, vol. 2. Artech House, 2003.

L. Besser and R. Gilmore, Practical RF Circuit Design for Modern Wireless Systems, vol. 1. Artech House, 2002.

I. J. Bahl, Lumped Elements for RF and Microwave Circuits. Artech House, 2003.

A. Sutono, A. Pham, J. Laskar, and W. R. Smith, "Development of three dimensional ceramic-based MCM inductors for hybrid RF/microwave applications,`` in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 1999, pp. 175–178.

A. Sutono, D. Heo, Y.-J. Chen, and J. Laskar, "High-Q LTCC-based passive library for wireless system-on-package (SOP) module development,`` IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1715–1724, Oct. 2001.

K. W. Kobayashi, "An 8-W 250-MHz to 3-GHz decade-bandwidth low-noise GaN MMIC feedback amplifier with > +51-dBm OIP3,`` IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2316–2326, Oct. 2012.

A. F. Osman, N. Mohd Noh, M. T. Mustaffa, and A. Abd Manaf, "Comparison of wideband LNA designs for SDR applications,`` in 2nd International Conference on Electronic Design (ICED), 2014, pp. 515–520.

L. Wu and M. Yu, "A wideband low-noise-amplifier with compact size and improved bandwidth,`` in 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2010, pp. 653–655.

T. Chang, J. Chen, L. Rigge, and J. Lin, "A packaged and ESD-protected inductorless 0.1-8 GHz wideband CMOS LNA,`` IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 6, pp. 416–418, Jun. 2008.

Y.-H. Yu, Y.-S. Yang, and Y.-J. Chen, "A Compact Wideband CMOS Low Noise Amplifier With Gain Flatness Enhancement,`` IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 502–509, Mar. 2010.

Z. Hao, D. Qing, L. Haitao, X. Shushan, Z. Qunli, and W. Zhigong, "A 0.1-8.5 GHz wideband CMOS LNA using forward body bias technology for SDR applications,`` in International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012, vol. 3, pp. 1–4.

M. El-Nozahi, A. A. Helmy, E. Sanchez-Sinencio, and K. Entesari, "A 2-1100 MHz wideband low noise amplifier with 1.43 dB minimum noise figure,`` in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2010, pp. 119–122.

K. B. Pramod and K. B. Praveen, "The design and simulation of 2.294 dB noise-figure RF wideband PHEMT LNA employing 2-stage cascade with single feedback.``

DOI: http://dx.doi.org/10.1590/2179-10742016v15i3600


  • There are currently no refbacks.

© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)