Analysis of Electronic Structure of Boron Nitride Nanotubes with Different Positions of Intrinsic Impurities

F. Gomes, V. Dmitriev, C. Nascimento


The pristine boron nitride nanotubes have a large direct band gap around 5 eV. This band gap can be engineered by doping. We investigate electronic structure of the doped hexagonal boron nitride (5,5) nanotubes  using the linearized augmented cylindrical wave method. In particular, this work focuses on systematical study of the band gap and the density of states around the Fermi-level when the nanotubes are doped by intrinsic impurities of two substitutional boron atoms in a super cell and a comparative analysis of the relative stability of three structures studied here. This corresponds to 3.3% of impurity concentration. We calculate 29 configurations of the nanotubes with different positions of the intrinsic impurities in the nanotube. The band gap and density of states around the Fermi level show strong dependence on the relative positions of the impurity atoms. The two defect sub bands called  appear in the band gap of the pristine nanotube. The doped nanotubes possess p-type semiconductor properties with the band gap of 1.3-1.9 eV.   


Boron nitride nanotube. Intrinsic impurity. Band gap. Density of states.

Full Text:



P. N. D`yachkov, "Augmented waves for nanomaterials," in Encyclopedia of Nanoscience and Nanotechnology, ed. by N. S. Nalwa, American Scientific Publishers, v. 1, pp. 191-212, 2004.

H. S. Philip and D. Akinwande, Carbon nanotube and graphene device physics, Cambridge: Cambridge University Press, 2011.

A. Javey and J. Kong, Carbon Nanotube Electronics, New York: Springer, 2009.

K. Stokbro, D. E. Peterson, S. Smidstrup, A. Blom, M. Ipsen and K. Kaasbjerg, "Semiempirical model for nanoscale device simulations," Phys. Rev. B, vol. 82, 075420, 2010.

A. Blom and K. Stokbro, "Towards Realistic Atomic-Scale Modeling of Nanoscale Devices," IEEE International Conference on Nanotechnology, pp. 1487-1492, August 2011.

S. Datta, Quantum Transport: Atom to Transistor, Cambridge, UK: Cambridge Universty Press, 2005.

Y. V. Nazarov and Y. M. Blanter, Quantum Transport. Introduction to Nanoscience, Cambridge: Cambridge University Press, 2009.

N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zetti, "Boron Nitride Nanotubes,`` Science, vol. 269, pp. 966-967, 1995.

L. Xu, S. Li, Y. Zhang and Y. Zhai, "Synthesis, properties and applications of nanoscale nitrides, borides and carbides,`` Nanoscale, vol. 4, pp. 4900-4915, April 2012.

J. Wang, C. H. Lee and Y. K. Yap, "Recent advancements in boron nitride nanotubes,`` Nanoscale, vol. 2, pp. 2028-2034, June 2010.

X. Blase, A. Rubio, S. G. Louie, M. L. Cohen, "Stability and Band Gap Constancy of Boron Nitride Nanotubes," Europhys. Lett., vol. 28, pp. 335-340, 1994.

] A. Y. Golovacheva and P. N. D`yachkov, "Effect of Intrinsic Defects on the Electronic Structure of BN Nanotubes," JETP Letters, vol. 82, pp. 737-741, 2005.

P. Piquini, R. J. Baierle, T. M. Schmidt, and A. Fazzio, "Formation energy of native defects in BN nanotubes: ab initio study,`` Nanotechnology, vol. 16, pp. 827-831, 2005.

E. B. Barros, A. Jorib, G. G. Samsonidze, R. B. Capaz, A. G. S. Filho, J. M. Filho, G. Dresselhaus, M. S. Dresselhaus, "Review on the symmetry-related properties of carbon nanotubes,`` Phys. Rep., vol. 431, pp. 261-302, 2006.

B. Huang, "Electronic Properties of Boron and Nitrogen Doped Graphene Nanoribbons and its Application for Graphene Electronics,`` Phys. Letters A, 375, pp. 845-848, 2011.

J. M. Soler, E. Artacho,J. D. Gale, A. García, J. Junquera,P. Ordejón, and D. Sánchez-Portal, "The SIESTA method for ab-initio order-N materials simulation,`` J. Phys.: Condens. Matt. 14, 2745-2779 (2002).



  • There are currently no refbacks.

© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)