Wireless microsystems for biomedical applications

João Paulo Carmo, José Higino Correia

Abstract


This paper presents a review with the state‑of‑the‑art of wireless microsystems for biomedical applications. Aspects including the radio‑frequency systems, data acquisition, application specificities (especially those in the context of implantable devices), power consumption and issues associated to their integration are presented. A review of COTS (Commercial Off‑The‑Shelf) systems and new concepts and technologies are also presented. 

Full Text:

PDF

References


K. T. Lau, et al., "A low-power synapse/neuron cell for artificial neural networks``, Microelectronics Journal, Vol. 30, pp. 1261-1264, 1999.

B. Chi, et al., "Low power high data rate wireless endoscopy transceiver``, Microelectronics Journal, Vol. 38, pp. 1070-1081, 2007.

J. P. Carmo, and J. H. Correia, "Low-power/low-voltage RF microsystems for wireless sensors networks", Microelectronics Journal, Vol. 40, No. 12, pp. 1746-1754, December 2009.

M. D. Weiss, et al., "RF coupling in a 433-MHz biotelemetry system for an artificial hip", IEEE Antennas and Wireless Propagation Letters, Vol. 8, pp. 916-919, 2009.

A. K. Skrivervik, and F, Merli, "On the efficient design, analysis and measurement of bio-compatible electrically small antennas", 2010 URSI International Symposium on Electromagnetic Theory, pp. 853-856, Berlin, Germany, 2010.

F. Roozeboom, et al., "Passive and heterogeneous integration towards a Si-based System-in-Package concept``, Thin Solid Films, Vol. 504, No. 1-2, pp. 391-396, May 2006.

B.-J. Gu, et al., "Wireless smart sensor with small spiral antenna on Si-substrate``, Microelectronics Journal, Vol. 42, No. 9, pp. 1066-1073, September 2011.

M. Fernández-Bolaños, et al., "Dipole antenna and distributed MEMS phase shifter fully integrated in a single wafer process for beam steering applications``, Microelectronic Engineering, Vol. 87, No. 5-8, pp. 1290-1293, May-August 2010.

E. Herth, et al., "Wafer level packaging compatible with millimeter-wave antenna``, Sensors and Actuators A: Physical, Vol. 173, No. 1, pp. 238-243, January 2012.

A. Polyakov, et al., "High-resistivity polycrystalline silicon as RF substrate in wafer-level packaging``, Electronic Letters: The IET, Vol. 41, No. 2, pp. 100-101, 2005.

P. Soontornpipit, et al., "Design of implantable microstrip antenna for communication with medical implants", IEEE Trans. on Microwave Theory and Techniques, Vol. 52, No. 8, pp. 1944-1951, 2004.

P. M. Mendes, et al., "Integrated chip-size antennas for wireless microsystems: Fabrication and design considerations``, Journal of Sensors and Actuators A: Elsevier Science, Vol. 125, pp. 217-222, 2006.

J. H. Correia, and J. P. Carmo, Introdução à s microtecnologias no silício, LIDEL, Lisbon, 2010. (In Portuguese).

L. M. Gonçalves, Microssistemas termoeléctricos baseados em teluretos de bismuto e de antimónio, PhD Thesis on Industrial Electronics Engineering, University of Minho, Guimarães, Portugal, 2008. (In Portuguese).

P. Abele, et al., "Wafer level integration of a 24 GHz differential SiGe-MMIC oscillator with a patch antenna using BCB as a dielectric layer``, 33rd European Microwave Conference Digest, Vol. 1, October 2003, pp. 293-296.

A. C. Peixoto , et al., "Invasive neural electrodes structure fabrication based on aluminum wafers``, Micromechanics Europe 2012 (MME 2012), Ilmenau, Germany, pp. 1-4. Session A-07, 9-12 September 2012.

P. M. Mendes, Microantenas integradas em microssistemas de rádio-frequência para comunicaçoes sem fios, PhD Thesis on Industrial Electronics Engineering, University of Minho, Guimarães, Portugal, 2005. (In Portuguese).

E. Y. Chow, et al., "Evaluation of cardiovascular stents as antennas for implantable wireless applications", IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 10, 2009.

W. G. Scanlon, et al., "Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz``, IEEE Transactions on Biomedical Engineering, Vol. 47, pp. 527-534, 2000.

D. A. Christensen, et al., "Basic Introduction to Bioelectromagnetics``, 2nd Ed, CRC Press, 2009.

J. L. Volakis, "Antenna Engineering Handbook", McGraw-Hill 2007.

R. Pethig, "Dielectric properties of body tissues``, Clinical Physics and Physiological Measurement: Institute of Physics (IOP), Vol. 8, No. Supplementary A, pp. 5-12, November 1987.

T. Karacolak, et al., "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring``, IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, pp. 1001-1008, April 2008.

K. Siwiak, "Radiowave propagation and antennas for personal communications``, Third Edition, Artech-House, 2007.

P. Anacleto, et al., "Multifunction antenna for compact wireless electrophysiological monitoring devices``, 2010 IEEE International Symposium on Antennas and Propagation and CNC/USN/URSI radio science meeting, Toronto - Ontário, Canada, 11-17 July 2010, pp. 1-4, paper 427.8.

J. H. Correia, et al., "A CMOS optical microspectrometer with light-to-frequency converter, bus interface and stray-light compensation``, IEEE Trans. Instrum. & Measurement, Vol. 50, No. 6, pp. 1530-1537, 2001.

L. Korba, et al., "Active infrared sensors for mobile robots``, IEEE Trans. Instrumentation & Measurement, Vol. 43, pp. 283-287, 1994.

H. F. López et al., "Towards the design of efficient nonbeacon-enabled ZigBee networks", Computer Networks: Elseviser Science, Vol. 56, No. 11, pp. 2714-2725, July 2012.

J. P. Carmo, et al., "A low-cost wireless sensor network for industrial applications", Wireless Telecommunications Symposium 2009, Praga, Czech Republic, Session D-2, pp. 1-4, 2009.

A. Bakker, and J. H. Huijsing, "Micropower CMOS temperature sensor with digital output``, IEEE Journal of Solid-State Circuits, Vol. 31, No. 7, pp. 933-937, 1996.

M. Motz, et al., "A chopped hall sensor with small jitter and programmable «true power-on» function``, IEEE Journal of Solid-State Circuits, Vol. 40, No. 7, pp. 1533-1540, 2005.

J. Chae, et al., "A monolithic three-axis micro-g micromachined silicon capacitive accelerometer``, IEEE Journal of Microelectromechanical Systems, Vol. 14, No. 2, pp- 235-244, 2005.

A. Arnaud, and C. Galup-Montoro, "Fully integrated signal conditioning of an accelerometer for implantable pacemakers``, Analog Integrated Circuits and Signal Processing, Vol. 49, No. 3, pp. 313-321, 2006.

J. P. Carmo, et al., "433 MHz implantable wireless stimulation of spinal nerves", 17th IEEE International Conference on Electronics Circuits and Systems, ICECS 2010, Athens, Greece, pp. 227-230, 2010.

R. Morais, et al., "A wireless RF CMOS mixed signal interface for soil moisture measurements``, Journal Sensors and Actuators A: Elsevier Science Direct, Vol. 115, pp. 376 384, 2004.

A. Vouilloz, et al., "A low-power CMOS super-regenerative receiver at 1 GHz", IEEE Journal of Solid-State Circuits, pp. 440-451, 2001.

N. Joehl, et al., "A low power 1 GHz super regenerative transceiver with time shared PLL control``, IEEE Journal of Solid-State Circuits, Vol. 36, No. 7, pp. 1025-1031, 2001.

D. M. W. Leenaerts, "Chaotic behavior in super regenerative detectors``, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 43, No. 3, pp. 169-176, 1996.

D. L. Ash, "A low-cost super-regenerative SAW stabilized receiver``, IEEE Transaction on Consumer Electronics, Vol. 33, pp. 395-404, 1987.

P. Favre, et al., "A 2 V 600 uA 1 GHz BiCMOS super regenerative receiver for ISM applications``, IEEE Journal of Solid State Circuits, Vol. 33, No. 12, pp. 218- 2196, 1998.

J. Y. Chen, et al., "A Fully Integrated Auto-Calibrated Super-Regenerative Receiver in 0.13 um CMOS``, IEEE Journal of Solid State Circuits, Vol. 42, No. 9, pp. 1976-1985, 2007.

F. X. Moncunill-Geniz, et al., "An 11 Mb/s 2.1 mW synchronous superregenerative receiver at 2.4 GHz``, IEEE Transactions on Microwave Theory and Techniques, Vol. 55, pp. 1355-1362, 2007.

F. X. Moncunill Geniz, et al., "New superregenerative architectures for direct sequence spread spectrum communications``, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 52, pp. 415-419, 2005.

J. A. Gutierrez, et al., "IEEE 802.15.4: Develping standards for low-power low-cost wireless personal area networks``. IEEE Network, Vol. 5, No. 15, 12-19, September/October 2001.

C. Enz, et al., "Ultra low-power radio design for wireless sensor networks``, IEEE International Workshop on Radio-Frequency Integration Technology: Integrated Circuits for Wideband Communication and Wireless Sensor Networks, Singapure, 2005.

C. C. Enz, et al., "WiseNET: An ultralow-power wireless sensor network solution``. IEEE Computer, Vol. 37, No. 8, pp. 62-70, 2004.

J. P. Carmo, et al., "A 2.4-GHz CMOS short range wireless-sensor-network interface for automotive applications", IEEE Transactions on Industrial Electronics, Vol. 57, No. 5, pp. 1764-1771, May 2010.

E. H. Callaway Jr., Wireless sensor networks, Architectures and protocols, Chapter 3: The physical layer, CRC Press, 2004.

N. S. Dias, J. P. Carmo, et al., "A low power/low voltage CMOS wireless interface at 5.7 GHz with dry electrodes for cognitive networks``, IEEE Sensors Journal, Vol. 11, pp. 755-762, March 2011.

A. El Hoiydi, et al., "The ultra low power WiseNET system``. Design, Automation and Test in Europe 2006, Munich, Germany, pp. 1 5, 2006.

N. S. Dias, J. P. Carmo, et al., "Wireless instrumentation system based on dry electrodes for acquiring EEG signals``, accepted for publication in the Medical Engineering and Physics, pp. 1-10, 2012.

L. A. Rocha, et al.,"A Body Sensor Network for E-Textiles Integration``. Eurosensors XX, Gothenburg, Sweden, 2006

T. Karacolak, et al., "Design of a dual band implantable antenna and development of skin mimicking gels for continuous glucose monitoring``, IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, pp. 1001-1008, 2008.

E. Y. Chow, et al., "Evaluation of cardiovascular stents as antennas for implantable wireless applications", IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 10, pp. 2523-2532. 2009.

F. J. O. Rodrigues, et al., "Modeling of a neural electrode with MEMS magnetic sensor for telemetry at low frequencies", MicroMechanics Europe (MME 2009), Toulouse, France, pp. D19/1-D194, 2009.

R. Lameiro, et al., "Large Area Microfabrication of Electroactive Polymeric Structures Based on Near-Field Electrospinning", Proceedia Engineering, Vol. 25, pp. 888-891, 2011.

R. Lameiro, F. J. O. Rodrigues, et al., "Small antenna based on a MEMS magnetic field sensor that uses a piezoelectric polymer as translation mechanism``, MicroMechanics Europe 2010 (MME 2010), pp. 116-119, Enschede, The Netherlands, 26-29 September 2010.

A. T. Sepulveda, et al., "Nanocomposite flexible pressure sensor for biomedical applications``, Procedia Engineering, Vol. 25, pp. 140-143, 2011.

J. P. Carmo, et al., "Thermoelectric generator and solid-state battery for stand-alone microsystems", Journal of Micromechanics and Microengineering: Institute of Physics (IOP) Publishing, Vol. 20, No. 8, pp. 1-8, August 2010.

J. F. Ribeiro, J. P. Carmo, et al., "Enhanced solid-state electrolytes made of lithium phosphorous oxynitride films``, Accepted for publication on Thin Solid Films, 2012.

J. C. Ribeiro, J. P. Carmo, et al., "Thin-film solid-state rechargeable lithium battery``, MicroMechanics Europe 2011 (MME 2011), pp. 190-193, Tï¦ensberg, Norway, 19-22 June 2011.




DOI: http://dx.doi.org/10.1590/S2179-10742013000200019

Refbacks

  • There are currently no refbacks.


© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)