Resonant Properties of Modified Triangular Plasmonic Nanoparticles with Higher Field Concentration

Karlo Q. da Costa, Victor A. Dmitriev


In this paper, we present an analysis of the resonant response of modified triangular metallic nanoparticles with polynomial sides. The particles are illuminated by an incident plane wave and the method of moments is used to solve numerically the electromagnetic scattering problem. We investigate spectral response and near field distribution in function of the length and polynomial order of the nanoparticles. Our results show that in the analyzed wavelength range (0.5-1.8) μm these particles possess smaller number of resonances and their resonant wavelengths, near field enhancement and field confinement are higher than those of the conventional triangular particle with linear sides. 

Full Text:



L. Novotny, Principles of Nano-Optics, Cambridge, New York, 2006.

L. Novotny, and N. V. Hulst, "Antennas for light,`` Nat. Photon., vol. 5, Feb. 2011.

P. Biagioni, J.-S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation,`` Rep. Prog. Phys., vol. 75, p. 024402, 2012.

T. H. Taminiau, et al., "Near-Fields driving of an optical monopole antenna,`` J. Opt. A: Pure Appl. Opt., vol. 9, S315–S321, 2007.

B. Hecht, et al., "Prospects of resonant optical antennas for nano- analysis,`` Chimia, vol. 60, pp. 765–769, 2006.

H. Fischer, and J. F. Martin, "Engineering the optical response of plasmonic nanoantennas,`` Opt. Express., vol. 16, pp. 9144–9154, 2008.

R. Kappeler, et al., "Field computation of optical antennas,`` J. Comp. Theor. Nano., vol. 4, pp. 686–691, 2007.

J. W. Liaw, "Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission,`` IEEE J. Selec. Top. Qua. Elec., vol. 14, pp. 1441–1447, 2008.

T. H. Taminiau, et. al., "Near-fields driving of a optical monopole antenna``, J. Opt. A: Pure Appl. Opt., vol. 9, pp. S315-S321, 2007.

B. Hecht, et. al., "Prospects of resonant optical antennas for nano- analysis``, Chimia, vol. 60(11), pp. 765-769, 2006.

P. Mühlschlegel, et. al., "Resonant optical antennas``, Science, vol. 308(5728), pp. 1607-1609, June 2005.

E. Cubukcu, et. al., "Plasmonic laser antenna``, Appl. Phys. Lett., vol. 89, pp. 93120, 2006.

W. Rechberger, et. al., "Optical properties of two interacting nanoparticles``, Opt. Com., vol. 220, pp.137-141, March 2003.

W. Rechberger, et al., "Optical properties of two interacting gold nanoparticles,`` Opt. Commu., vol. pp. 220, 137–141, 2003.

J. Nelayah, et al., "Mapping surface plasmons on a single metallic nanoparticle,`` Nat. Phys., vol. 3, pp. 248–353, 2007.

K. Q. Costa, and V. Dmitriev, "Comparative analysis of circular and triangular gold nanodisks for field enhancement applications,`` J. of Micro., Opt. and Electro. Appl., vol. 9, N2, p. 123-130, Dec.2010.

N. W. Pereira, K. Q. Costa, and V. Dmitriev, "Development of computational 3D MoM algorithm for nanoplasmonics,`` J. of Micro., Opt. and Electro. Appl., vol. 12, N2, p. 159-169, 2013.

B. Sturman, E. Podivilov, and M. Gorkunov, "Metal nanoparticles with sharp corners: universal properties of plasmon resonances,`` A Letters J. Exploring the Frontiers of Phys., vol. 101, p. 57009, Mar. 2013.

J. P. Kottmann, et al., "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,`` Chem. Rev. Lett., vol. 314, pp. 1-6, Jun. 2001.

J. P. Kottmann, et al., "Plasmon resonances of silver nanowires with a nonregular cross section,`` Phys. Rev. B, vol. 64, p. 235402, Nov. 2001.

J. P. Kottmann, and O. J. F. Martin, "Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires,`` Appl. Phys. B, vol. 73, pp. 299-304, 2001.

J. P. Kottmann, et al., "Spectral response of plasmon resonant nanoparticles with a non-regular shape,`` Opt. Express, vol. 6, N11, pp. 213-219, May 2000.

D. E. Livesay, and K. M. Chen, "Electromagnetic fields induced inside arbitrary shaped biological bodies,`` IEEE Trans. Micro. Theo. Thec., vol. 22, pp. 1273–1280, 1974.



  • There are currently no refbacks.

© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)