Comparative Study of Fundamental Properties of Honey Comb Photonic Crystal Fiber at 1.55μm Wavelength

S. S. Mishra, Vinod Kumar Singh


Fundamental properties such as mode field distribution, real effective refractive index, imaginary effective refractive index, confinement loss of two new kinds of honeycomb photonic crystal fibers are successfully studied by using Full-Vectorial Finite element method (FV-FEM). Low confinement loss 0.1 -10-4dB/km is achieved at wavelength 1.55µm in hollow core honey comb PCF by removing 6-air holes in cladding region with air hole diameter 1.38µm in cladding region, pitch 2.3µm and air core diameter 0.2µm.

Full Text:



J.C. Knight, T. A. Birks, P. St. J. Russell and D. M. Akin, "All-Sillica single mode fiber with photonic crystal cladding,`` Opt. Letters 21, pp.1547-1549,1996.

R. S. Fyath, Alhuda A. Al-mfrji,"Theoretical investigation of noise and modulation characteristics of photonic crystal lasers,`` Fiber and Integrated Optics 30,1,pp.45-60, 2011.

Sunil K. Khijwania, Frances D. Carter, John T. Foley and Jagdish P. Singh, "Effect of lunching condition on modal power characteristics of multi mode step index optical fiber: A theoretical and Experimental Investigation,`` Fiber and Integrated Optics 29,1, pp.62-75,2010.

John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn and Robert D. Meade, "Photonic Crystals: molding the flow of light,`` Princeton University Press Princeton and Oxford, 2008.

J. C. Knight, "Photonic Crystal Fibres,`` Nature, Vol. 424, pp. 847-851, 2003.

T. P Hansen, et al, "Solid-Core Photonic Bandgap Fiber with Large Anomalous Dispersion``, OFC Proceeding, pp.70-77, 2003.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K.W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre,`` Nature 424, 657-659 (2003).

M. Yan and P. Shum, "Air guiding with honeycomb photonic bandgap fiber,`` IEEE Photon. Technol. Lett.17, 64-66 (2005).

M. Yan, P. Shum, and J. Hu, "Design of air-guiding honeycomb photonic bandgap fiber,`` Opt. Lett. 30,465-467 (2005).

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, "Highly increased photonic band gaps in silica/air structures,`` Opt. Commun. 156, 240-244 (1998).

M. Chen and R. Yu, "Analysis of photonic bandgaps in modified honeycomb structures,`` IEEE Photon.Technol. Lett. 16, 819-821, 2004.

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,`` Opt. Express 11, 3100-3109 (2003).

L. Vincetti, F. Poli, and S. Selleri, "Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers``, IEEE Photon. Technol. Lett. 18, pp.508-510, 2006.

L. Vincetti, "Confinement Losses in Honeycomb Fiber``, IEEE Photon. Tech. Lett. 16, pp. 2048-2050, 2004.

J.Wang, C.J.W. Hu and M.Gao "High birefringence photonic bandgap fiber with elliptical air holes``, Optical Fiber Technology 12,pp.265-267, 2006.

Abdur S. M. Razzak and Y.Namihira, "Tailoring Dispersion and Confinement Losses of Photonic crystal fibers using Hybrid Cladding``, Journal of Lightwave technology,26,No.13,pp.1909-1914,2008.

F. Brechet, J. Marcou, D. Pagnoux and P. Roy, "Complete Analysis of the characteristics of propagation into photonic crystal fibers by Finite Element Method,`` Optical Fiber Technology 6, pp. 181-191, 2000.

T. P. White, B. T. Kuhlmey, D. Maystre, G. Renversez, C. Martijn de Sterke, L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation,`` J. Opt. Soc. Am. 19, pp.2322-2330, 2002.

M. Qiu "Analysis of guided modes in photonic crystal fibers using the Finite-Differece Time-Domain Method``, Microwave and optical Technology Letters 30, pp. 5, 2001.

S. Guo and S. Albin, "Simple plane wave implementation for photonic Crystal calculations,`` Optics Express 11, pp.167-175, 2003.

K. S. Chiang, "Analysis of rectangular dielectric waveguides: effective-index method with built-in perturbation correction,`` Electronics Letters 28, pp.388-390, 1992.

N. A. Issa and L. Poladian, "Vector wave expansion method for leaky modes of microstructured optical fibers,`` J. Lightwave Technol. 21, pp.1005–1012, 2003.

M. Koshiba, Y. Tsuji, "Time domain beam propagation method and its application to Applications of Holey Fibre: Joseph Lizier 106 photonic crystal circuits,`` Journal of Lightwave Technology 18, pp.102-110, 2000.

D. Mogilevtsev, T. A. Birks, P. St. J. Russel, "Localized function method for modeling defect modes in 2-D photonic crystals,`` Journal of Lightwave Technology 17, pp.2078-2081,1999.

L. Zhao-lun, H. Lan-tian and W. Wei Tailoring Nonlinearity and Dispersion of Photonic crystal Fibers using Hybrid cladding`` Brazilian journal of physics 39,1,pp. 50-54. 2009.

H.P. Uranus and J.W. Hoekstr, Modelling of micro structured waveguides using finite element based vectorial mode solver with transparent boundary conditions, Opt. Express 12, 12,pp.2795-2809,2004.

J. Jin, The Finite Element Method in Electromagnetics 2002 (2nd Ed. John Wiley & Sons, New York).

S. S. Mishra and Vinod. K. Singh, Study of Fundamental Propagation Properties of Solid Core Holey Photonic Crystal Fiber in Telecommunication window, Chinese Journal of Physics 48, 5, pp.592-606, 2010.

S. Mishra and Vinod K. Singh, Study of dispersion properties of hollow core photonic crystal fiber by finite element method, Journal of Optoelectronics and Advanced Materials-Rapid Communication 3,ISS 9, pp. 874-878,2009.

S. S. Mishra and Vinod Kumar Singh, Study of Nonlinear Property of Hollow core Photonic crystal fiber,`` International Journal of Light and Electron Optics 122(8) pp.687-690, 2011.

S. S. Mishra and Vinod K. Singh "Polarization Maintaining Highly Birefringent Small Mode Area Photonic Crystal Fiber at Telecommunication Window,`` Journal of Microwave Optoelectronics Electromagnetic Research, vol.10, no.1, pp. 33-41, June 2011.

FEMSIM R-Soft Design Group, Ossining 2007. NY 10562,1.3.



  • There are currently no refbacks.

© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)