Numerical Treatment of Rounded and Sharp Corners in the Modeling of 2D Electrostatic Fields

L. Krähenbühl, F. Buret, R. Perrussel, D. Voyer, P. Dular, V. Péron, C. Poignard

Abstract


This work deals with numerical techniques to compute electrostatic fields in devices with rounded corners in 2D situations. The approach leads to the solution of two problems: one on the device where rounded corners are replaced by sharp corners and the other on an unbounded domain representing the shape of the rounded corner after an appropriate rescaling. Both problems are solved using different techniques and numerical results are provided to assess the efficiency and the accuracy of the techniques.

Full Text:

PDF

References


H. Timouyas, "Analyse et analyse numérique des singularités en électromagnétisme,`` Ph.D. dissertation, Ecole Centrale de Lyon, 2003. [Online]. Available: http://tel.archives-ouvertes.fr/tel-00110828.

M. Dauge, S. Tordeux, and G. Vial, Around the Research of Vladimir Maz'ya II: Partial Differential Equations. Springer Verlag, 2010, ch. Selfsimilar Perturbation near a Corner: Matching Versus Multiscale Expansions for a Model Problem, pp. 95–134.

L. Krähenbühl, H. Timouyas, M. Moussaoui, and F. Buret, "Coins et arrondis en éléments finis - Une approche mathématique des coins et arrondis pour les solutions par éléments finis de l'équation de Laplace,`` RIGE, vol. 8, pp. 35–45, 2005.

S. Tordeux, G. Vial, and M. Dauge, "Matching and multiscale expansions for a model singular perturbation problem,`` Comptes Rendus Mathematique, vol. 343, no. 10, pp. 637–642, Nov. 2006.

P. Grisvard, Elliptic problems in nonsmooth domains. Pitman Advanced Pub. Program, 1985.

F. Henrotte, B. Meys, H. Hedia, P. Dular, and W. Legros, "Finite element modelling with transformation techniques,`` Magnetics, IEEE Transactions on, vol. 35, no. 3, pp. 1434–1437, 1999.

Wikipedia. Conformal map. [Online]. Available: http://en.wikipedia.org/wiki/Conformal_map

E. Durand, Electrostatique, Vol. 2 : Problèmes généraux conducteurs. Editions Masson, Paris, 1964-1966.

C. Geuzaine, B. Meys, F. Henrotte, P. Dular, and W. Legros, "A Galerkin projection method for mixed finite elements,`` Magnetics, IEEE Transactions on, vol. 35, no. 3, pp. 1438–1441, 1999




DOI: http://dx.doi.org/10.1590/S2179-10742011000100008

Refbacks

  • There are currently no refbacks.


© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)