Mutual Coupling Reduction in Phased Array Antennas Applying High-Impedance Surface at X Band

J. B. O. de Araújo, V. P. R. M. Souza, T. N. Ferreira, L. J. de Matos, G. L. Siqueira, J. M. Souza, M. W. B. da Silva


This paper presents a microstrip phased array using High Impedance Surface - Electromagnetic Band Gap (HIS-EBG) in order to minimize the effects of mutual coupling among the antenna elements. Each element of the array is fed by a coaxial cable allowing the beam steering by controlling the signal of the input port of each element. This phased array operates at X Band as well as the band-gap of the HIS-EBG structure. Its main applications are satellite communication and broadcasting systems. Results show reductions in the mutual coupling up to 12 dB, and improvements in the return loss and gain.


electromagnetic band-gap, metamaterial, microstrip, phased array.

Full Text:



D. S. Zrnic, J. F. Kimpel, D. E. Forsyth, et al., “Agile-beam phased array radar for weather observations,” Bulletin of the American Meteorological Society, vol. 88, nº 11, pp. 1753-1766, 2007.

M. C. Tang, S. Xiao, B. Wang, J. Guan, T. Deng, “Improved performance of a microstrip phased array using broadband and ultra-low-loss metamaterial slabs,” IEEE Antennas and Propagation Magazine, vol. 53, nº 6, pp. 31-41, 2011.

A. Dadgarpour, B. Zarghooni, B. S. Virdee, T. A. Denidni, “Improvement of gain and elevation tilt angle using metamaterial loading for millimeter-wave applications,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 418-420, 2016.

S. Zhu, H. Liu, P. Wen, “A New Method for Achieving Miniaturization and Gain Enhancement of Vivaldi Antenna Array Based on Anisotropic Metasurface,” IEEE Transactions on Antennas and Propagation, vol. 67, nº 3, pp. 1952-1956, 2019.

N. Engheta, R. W. Ziolkowski, Metamaterials: physics and engineering explorations, John Wiley & Sons, 2006.

G. E. Dominguez, J. M. F. Gonzalez, P. Padilla, M. S. Castaner, “Mutual coupling reduction using EBG in steering antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1265-1268, 2012.

M. Suwailam, O. Siddiqui, O. Ramahi, “Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators,” vol. 9, pp. 876-878, 2010.

R. Karimian, A. Kesavan, M. Nedil, T. Denidni, “Low-mutual-coupling 60-GHz MIMO antenna system with frequency selective surface wall,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 373-376, 2017.

Y. Rahmat-Samii, H. Mosallaei, “Electromagnetic band-gap structures: classification, characterization, and applications,” Proc. of 11th International Conference on Antennas and Propagation (ICAP 2001, pp. 560-564, 2001.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, nº 11, pp. 2059-2074, 1999.

E. Brookner, “Phased arrays around the world-progress and future trends,” em IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, 2003.

F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Transactions on Antennas and Propagation, vol. 51, nº 10, pp. 2936-2946, 2003.

D. Sievenpiper, “High-impedance electromagnetic surfaces,” 1999.

O. Luukkonen, M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski, I. S. Nefedov and S. A. Tretyakov, “Effects of spatial dispersion on reflection from mushroom-type artificial impedance surfaces,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, nº 11, pp. 2692-2699, 2009.

C. Balanis, Antenna theory: analysis and design, John Wiley & Sons, 2016.



  • There are currently no refbacks.

© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)