Generation of Non-diffraction Vortex Beam and Its Application in Digital Communication

H. Huang, Y. Yu

Abstract


An axicon-frustum basin-type Bessel resonator is designed for generating non-diffraction vortex beams with opposite propagation directions under different conditions. Based on the theory of geometric optics, the principle of creating vortex beams is analyzed in this axicon-frustum basin-shaped resonant cavity. It is shown that a non-diffraction vortex beam can be produced in the cavity under high-order beam stimulation. In the terahertz wavebands, the dyadic Green's function algorithm is used to numerically evaluate the electromagnetic characteristics in the cavity, and the numerical results demonstrate that the conclusion of the principle analysis is valid. Finally, the application of non-diffraction vortex beams in digital communication is explored.

Keywords


Non-diffraction vortex beam, Resonator, Dyadic Green's function, Phase-shift keying (PSK)

Full Text:

PDF

References


Born M. Principles of Optics-electromagnetic Theory of Propagation, Interference and Diffraction of Light (7. ed.) [M]. DBLP, 1999.

Durnin J, Jr M J, Eberly J H. Diffraction-free Beams [J]. Physical Review Letters, 2008, 58 (15): 1499-1501.

Durnin J. Exact Solutions for Non-diffracting Beams. I. The Scalar Theory [J]. J. opt. soc, 1987, 4: 651-654.

Bagini V, Frezza F, Santarsiero M, et al. Generalized Bessel-Gauss Beams [J]. Optica Acta International Journal of Optics, 1996, 43(6): 1155-1166.

G.M. Chen, H.C. Lin, J.X. Pu. Generation of High-order Bessel Beams by Focusing Vortex Beams with an Axicon [J]. Journal of Optoelectronics Laser, 2011, 22(6): 945-950.

X.Y. Liu, X.F. Dai, L.Y. Shan, et al. Focusing Properties of Vortex Beam with an Axicon [J]. Laser & Optoelectronics Progress, 2012, 49(2).

He H, Friese M E, Heckenberg N R, et al. Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser beam with a Phase Singularity [J]. Physical Review Letters, 1995, 75(5): 826.

Simpson N B, Dholakia K, Allen L, et al. Mechanical Equivalence of Spin and Orbital Angular Momentum of Light: an Optical Spanner [J]. Optics Letters, 1997, 22(1): 52-4.

Gahagan K T, Swartzlander G A. Optical Vortex Trapping of Particles [C]. // Lasers and Electro-Optics, 1996. CLEO '96. Summaries of papers presented at the Conference on. IEEE, 2002: 827-9.

Kuga T, Torii Y, Shiokawa N, et al. Novel Optical Trap of Atoms with a Doughnut Beam [J]. Physical Review Letters, 1997, 78(25): 4713-4716.

Lee K, Kim J A, Kim K, et al. Cold Atoms in Hollow Ooptical Systems [J]. Journal- Korean Physical Society, 1999, 35(3): 115-121.

Dasgupta R, Ahlawat S, Verma R S, et al. Optical Orientation and Rotation of Trapped Red Blood Cells with Laguerre-Gaussian Mode [J]. Optics Express, 2011, 19(8): 7680-7688.

Oemrawsingh S S R, Jong J A D, Ma X, et al. High-dimensional Mode Analyzers for Spatial Quantum Entanglement [J]. Physical Review A, 2006, 73(3): 32339.

J. Jin, W. Shao, F.Q Meng. Application of Vortex Electromagnetic Wave in Military Wireless Communication [J]. Communications Technology, 2014, 47(9): 985-988.

L.I. Xi, Z.I. Feng, J Feng, et al. Electromagnetic Vortex and Its Application in Wireless Communication [J]. Telecommunication Engineering, 2015.

Thidé B, Then H, Sjöholm J, et al. Utilization of Photon Orbital Angular Momentum in the Low-frequency Radio Domain [J]. Physical Review Letters, 2007, 99(8): 087701.

Liu D, Gui L, Akram M R. Generation of OAM Radio Waves Using Slot Antenna Array [C]. // Asia-Pacific Microwave Conference. IEEE, 2015: 1-3.

S Zheng, X Hui, X Jin, et al. Generation of OAM millimeter waves using traveling-wave circular slot antenna based on ring resonant cavity [C]. // IEEE International Conference on Computational Electromagnetics. IEEE, 2015: 239-240.

Y Li, W.C. Mo, Z.G Yang,et al. Generation of Terahertz Vortex Beams Based on Metasurface Antenna Array [J]. Laser technology. 2017.41(5): 644-648.

Tamburini F, Thidé B, Boaga V, et al. Experimental Demonstration of Free-space Information Transfer Using Phase Modulated Orbital Angular Momentum Radio [J]. Physics, 2013.

Bennis A, Niemiec R, Brousseau C, et al. Flat Plate for OAM Generation in the Millimeter Band [C]. // European Conference on Antennas and Propagation. IEEE, 2013: 3203-3207.

Mahmouli F E, Walker S D. 4-Gbps Uncompressed Video Transmission over a 60 GHz Orbital Angular Momentum Wireless Channel [J]. IEEE Wireless Communications Letters, 2013, 2(2): 223-226.

Tamburini F, Mari E, Sponselli A, et al. Encoding Many Channels in the Same Frequency through Radio Vorticity: First Experimental Test [J]. New Journal of Physics, 2012, 14(3): 811-815.

Kupferman J, Arnon S. Receiver Design for OWC Orbital Angular Momentum Communication in Data Center Applications [C]. // International Symposium on Communication Systems, Networks and Digital Signal Processing. IEEE, 2016: 1-6.

H Huang, Y. Z. Yu. Design and Analysis of Bessel Resonator at Terahertz Frequencies [J]. Laser & Optoelectronics Progress, 2017, 54(1): 012601.

H Huang, Y. Z. Yu. A New Frustum Bessel Resonator [J]. Journal of Microwaves, 2017. 33(6) : 52-56,84.

Jarutis V, Paškauskas R, Stabinis A. Focusing of Laguerre–Gaussian Beams by Axicon [J]. Optics Communications, 2000, 184(1–4): 105-112.

G.M Chen, H.C Lin, J.X Pu. Generation of High-order Bessel Beams by Focusing Vortex Beams with an Axicon [J]. Journal of Optoelectronics Laser, 2011, 22(6): 945-950.

Z.f. Lv, L.k. Lin, C.S.Lu, et al. Research on the Characteristics of Vortex Electromagnetic Wave Transmission in Terahertz Band [C]. National Conference on Microwave Millimeter Wave (ZhongCe). China, 2017.




DOI: http://dx.doi.org/10.1590/2179-10742019v18i21408

Refbacks

  • There are currently no refbacks.


© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)