Performance Analysis of X Band Horn Antennas using Manufacturing Method Coated with Different Techniques

E. L. Chuma, Y. Iano, L. L. B. Roger, M. Scroccaro, F. Frazatto, L. T. Manera

Abstract


In this study, horn antennas operating in the X band (8 – 12 GHz), which were manufactured using the additive manufacturing method (AM) and coated with different conductive surfaces, are investigated. The construction of the antennas by the AM method involves fabrication of the antenna structure using acrylonitrile butadiene styrene (ABS) thermoplastic by a 3D printer; then, the antennas were coated with several conductive surfaces. Various conductive coatings used for the three antennas in this study are as follows: conductive silver paint for the first antenna, copper tape for the second, and copper plating for the third. In addition, the performance of these antennas was investigated in terms of input reflection coefficient, gain, radiation pattern, and weight, and the results were compared with those of the conventional aluminum horn antenna of same dimensions.

Keywords


antenna; 3d printing; additive manufacturing; horn

Full Text:

PDF

References


A. I. Dimitriadis, T. Debogovi?, M. Favre, M. Billod, L. Barloggio, J. Ansermet, E. Rijk, "Polymer-Based Additive Manufacturing of HighPerformance Waveguide and Antenna Components", Proceedings of the IEEE, 2017, v. 105, i. 4, pp. 668 - 676

M. Kilian, C. Hartwanger, M. Schneider, M. Hatzenbichler, "Waveguide components for space applications manufactured by additive manufacturing technology", IET Microwaves, Antennas & Propagation - Special Issue: Microwave Components and Antennas Based on Advanced Manufacturing Techniques, 2017

S. Verploegh, M. Coffey, E. Grossman, Z. Popovi´c, "Properties of 50–110-GHz Waveguide Components Fabricated by Metal Additive Manufacturing", IEEE Transactions on Microwave Theory and Techniques, 2017, v. 65, n. 12

E. Laplanche, W. Feuray, J. Sence, A. Perigaud, et al., "Additive manufacturing of low cost and efficient proof of concepts for microwave passive components", IET Microwaves, Antennas & Propagation - Special Issue: Microwave Components and Antennas Based on Advanced Manufacturing Techniques, 2017

B. Zhang, Y.X. Guo, H. Zirath, Y. P. Zhang, "Investigation on 3-D-Printing Technologies for Millimeter-Wave and Terahertz Applications", Proceedings of the IEEE, 2017, V. 105, n. 4

"American National Standard for Electromagnetic Compatibility - Radiated Emission Measurements in Electromagnetic Interference (EMI) Control - Calibration of Antennas (9 kHz to 40 GHz)", ANSI C63.5-1998, 1998

M. Dionigi, C. Tomassoni, G. Venanzoni, R. Sorrentino, "Simple High-Performance Metal-Plating Procedure for Stereolithographically 3-D-Printed Waveguide Components", IEEE Microwave and Wireless Components Letters, 2017, V. 27, n. 11

A. Périgaud, S. Bila, O. Tantot, N. Delhote, and S. Verdeyme, "3D printing of microwave passive components by different additive manufacturing technologies", in Proc. IEEE MTT-S Int. Microw. Workshop Ser. Adv. Mater. Process. RF THz Appl. (IMWS-AMP), 2016, pp. 1–4.

O. H. Kwon, W. B. Park, S. Lee, J. M. Lee, Y. M. Park, K. C. Hwang, "3D-Printed Super-Wideband Spidron Fractal Cube Antenna with Laminated Copper", Applied Sciences, 2017, 7, 979

Yao et al., “Ka band 3D printed horn antennas”, 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)

C.A. Balanis, "Antenna Theory Analysis and Design", 3rd ed, John Wiley & Sons, 2005

B. Riddle, J. Baker-Jarvis, J. Krupka, "Complex Permittivity Measurements of Common Plastics Over Variable Temperatures", IEEE Transactions on Microwve Theory and Techniques, 2003, v. 51, n. 3

J. S. Chieh, B. Dick, S. Loui, J. D. Rockway, "Development of a Ku-Band Corrugated Conical Horn Using 3-D Print Technology", IEEE Antennas and Wireless Propagation Letters, 2014, v. 13

A. Genc, I. B. Basyigit, T. Goksu, S. Helhel, "Investigation of the Performances of X-Ku Band 3D Printing Pyramidal Horn Antennas Coated with the Different Metals", 10th International Conference on Electrical and Electronics Engineering (ELECO), 2017

G. Huang, S. Zhou, C. Sim, T. Chio, T. Yuan, "Lightweight Perforated Waveguide Structure Realized by 3-D Printing for RF Applications", IEEE Transactions on Antennas and Propagation, 2017, v. 65, n. 8

S. Roy, B. Young, Y.-H. Chang, B. D. Braaten and S. Noghanian, "Effect of Locations on the 3-D Printing Bed Surface for Designing PC-ABS Based RF Circuits," 2018 IEEE International Symposium on Antennas and Propagation, Jul. 8 - 13, 2018, Boston, MA, CA USA.

"https://www.atomadhesives.com/TDS/AA-DUCT-AD1-TDS-1-PART-LOW-COST-HEAT-DRY-ELECTRICALLY-CONDUCTIVE-SILVER-EPOXY-ADHESIVE.pdf", accessed 17 March 2018

"https://www.3m.com/3M/en_US/company-us/all-3m-products/~/ 3M-Conductive-Copper-Foil-Tape-3313/?N=5002385+3293242553", accessed 17 March 2018

"https://www.mgchemicals.com/products/emi-and-rfi-shielding/ acrylic-conductive-coatings-ar-series/838ar-total-ground-carbon-conductive-coating ", accessed 17 March 2018

"https://nardamiteq.com/docs/WAVEGUIDEHORNANTENNAS_ STANDARD_GAIN_HORNS_2.60_TO_40_GHZ.PDF", accessed 17 March 2018

S. P. Morgan Jr., "Effect of Surface Roughness on Eddy Current Losses at Microwave Frequencies", Journal of Applied Physics, 1949, 20, 352

C. R. Garcia, R. C. Rumpf, H. H. Tsang, J. H. Barton, "Effects of extreme surface roughness on 3D printed horn antenna", Electronics Letters, 2013, v. 49, n. 12

D. Shamvedi, O. J. McCarthy, E. O'Donoghue, P. O'Leary, R. Raghavendra, "Improved Performance of 3D Metal Printed Antennas through Gradual Reduction in Surface Roughness", International Conference on Electromagnetics in Advanced Applications (ICEAA), 2017




DOI: http://dx.doi.org/10.1590/2179-10742019v18i21337

Refbacks

  • There are currently no refbacks.


© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)