Calibration of TLM Model for Semiconductor Optical Amplifier by Heuristic Parameters' Extraction

P. Rocha, C. M. Gallep, T. Sutili, E. Conforti

Abstract


The main systemic behavior of a Semiconductor Optical Amplifier Modelling are obtained through extensive simulations, with reasonable approximation to experimental data of commercial devices the optical gain x bias current, for different optical inputs (-25 to 0 dBm), and the gain saturation profile for different I-bias (0 to 180 mA). Parameters such as active region thickness, confinement factor, linear gain coefficient and the transparency current were adjusted based on above data. The method can be applied for different SOAs, enabling more accurate numerical predictions for black-box devices. 


Keywords


Semiconductor Optical Amplifier; calibration; extraction; TLM method.

Full Text:

PDF

References


T. Durhuus, B. Mikkelsen, C. Joergensen, S.L. Danielsen, K.E. Stubkjaer, All optical wavelength conversion by semiconductor optical amplifiers, J Lightwave Technol 14 (1992), 942–945.

C. M. Gallep, A. L. R. Cavalcanti, N. S. Ribeiro, and E. Conforti, Nonhomogeneous current injection for the enhancement of semiconductor optical amplifier-based wavelength converters, Microwave Opt Technol Lett 48 (2006), 1141-1144.

D. Brunina, D. Liu, and K. Bergman, An energy-efficient optically connected memory module for hybrid packet- and circuit-switched optical networks, IEEE J Sel Topics Quantum Electron 19 (2013).

T. Tanemura, I. M. Soganci, T. Oyama, T. Ohyama, S. Mino, K. V. Williams, N. Calabretta, H. J. S. Dorren, and Y. Nakano, Large-Capacity Compact Optical Buffer Based on InP Integrated Phased-Array Switch and Coiled Fiber Delay Lines, J Lightwave Technol 29 (2011), 396–402.

A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, R. Schnabel, and H. G. Weber, Semiconductor laser amplifier as optical switching gate, J Lightwave Technol 11 (1993), 1287–1295.

M. Renaud, M. Bachmann, and M. Erman, Semiconductor Optical Space Switches, IEEE J Sel Topics Quantum Electron, vol. 2, no. 2, Jun 1996.

R. C. Figueiredo, T. Sutili, N. S. Ribeiro, C. M. Gallep, and E. Conforti, Semiconductor Optical Amplifier Space Switch With Symmetrical Thin-Film Resistive Current Injection, J Lightwave Technol 35 (2017), 280-287.

R. C. Figueiredo, N. S. Ribeiro, A. M. Oliveira, C. M.Gallep, and E. Conforti, Hundred-Picoseconds Electro-Optical Switching With Semiconductor Optical Amplifiers Using Multi-Impulse Step Injection Current, J Lightwave Technol 33 (2015), 69-77.

A. Chiuchiarelli, C. M. Gallep, and E. Conforti, Fabry-Perot laser-based optical switch for multicast transmission in bidirectional optical access networks, Microwave and Opt Technol Lett 58 (2016), 1466-1469.

N. S. Ribeiro, C. M. Gallep, and E. Conforti, Semiconductor optical amplifier cavity length impact over data erasing/rewriting, Microwave Opt Technol Lett 55 (2013), 998-1001.

L. Xi, Y. Ma, and L. Sun, Regeneration of DQPSK signals using semiconductor optical amplifier-based phase regenerator, in Int. Conf. on Advanced Infocom Technology, 2011: pp. 1.

G. Gavioli and P. Bayvel, Novel 3R regenerator based on polarization switching in a semiconductor optical amplifier-assisted fiber Sagnac interferometer, IEEE Photonics Technol Lett 15 (2003), 1261.

P. Vorreu, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, Cascadability and regeneration properties of SOA all-optical DPSK wavelength converters``, IEEE Photonics Technol Lett 18 (2006), pp.1970-1972.

Y. Zhan, Min Zhang, Mintao Liu, Lei Liu, and Xue Chen, All-Optical Signal Regeneration Based on XPM in Semiconductor Optical Amplifiers, Asia Communications and Photonics Conference, 2012.

P. Rocha, C. M. Gallep, and E. Conforti, All-optical mitigation of amplitude and phase-shift drift noise in semiconductor optical amplifiers, Optical Engineering 54(10), 2015.

VPItransmissionMaker, "Photonics circuits user's manual``.

C. M. Gallep, Redução do tempo de chaveamento eletro-óptico em amplificadores ópticos a semicondutor, PhD thesis in Portugueese, FEEC-UNICAMP, 2003.

S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices, 3a ed., John Wiley & Sons, New Jersey, EUA, 2007.

A.J. Lowery, A new dynamic semiconductor laser model based on the transmission line modelling method, IEEE Proc J Optoelectron 134 (1987), 281–289.

A.J. Lowery, Transmission-line modelling of semiconductor lasers: the transmission-line laser model, Int. J. Numerical Modelling 2 (1989), 249–265.

A. J. Lowery, Transmission-line laser modelling of semiconductor laser amplified communications systems, IEEE Proc J Optoelectron 139 (1992), 180–188.

A. Das Barman, M. Scaffardi, S. Debnath, L Potì, and A. Bogoni, "Design tool and its experimental validation for SOA-based photonic signal processing``, Optical Fiber Techonol 15 (2009), 39-49.

M. Conelly, Semiconductor Optical Amplifiers, Springer, New York, EUA, 2004.

L. Gua-Dong, W. Chong-Qing, W. Fu, and M. Ya-Ya, Measurement of the internal loss coefficient of semiconductor optical amplificers, Chinese Phys Lett 30 (2013), 058501.

M. C. Tatham, I. F. Lealman, C. P. Seltzer, L. D. Westbrook, and D. M. Cooper, Resonance frequency, damping, and differential gain in 1.5 µm multiple quantum-well lasers, IEEE J Quantum Electron 28 (1992), 408-414.

E. Wintner, and E. P. Ippen, Nonlinear carrier dynamics in GaxIn1-xAsyP1-y compounds, Appl Phys Lett 44 n° 2, 1984.

B. Sermage, J. P. Heritage, and N. K. Dutta, Temperature dependence of carrier lifetime and Auger recombination in 1.3 µm InGaAsP, Appl Phys Lett. 57, n° 12, 1985.




DOI: http://dx.doi.org/10.1590/2179-10742018v17i21208

Refbacks

  • There are currently no refbacks.


© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)